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ON A(p)-SUBSETS OF SQUARES 

BY 
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ABSTRACT 

This paper is a follow up of [Bt]. It is shown that the sequence of squares 
{ n21 n = 1, 2 , . . .  } contains A( p)-subsets of"maximal density", for any given 
p > 4. The proof is based on the probabilistic method developed in [Bt] and a 
precise estimate of the A(p)-constant for the sequence of squares itself. 
Analogues of this phenomenon are obtained for other arithmetic sets, such as 
the sequence of kth powers {n k I n = 1, 2 . . . .  ) or the sequence of prime 
numbers. Sections 2 and 3 of the paper are of independent interest to 
orthogonal system theory. 

1. Introduction 

Following [R], a subset S of the integers Z is called a A(p)-set  (p  > 1) 
provided an inequality 

(1.1) Y~ a . e  i"` p <= C Y~ a"ei~' t 
nES n~ES 

holds, for some constant 0 < C < ~ and all (finitely supported) scalar 
sequences ( a , ) , e s .  Here II lip refers to the LP-norm on the circle T = R/2rtZ. 
Using the function space language, the previous condition (1.1) is written as 

L~ = Ls ~ (cf. [G-MeG]). 
A natural problem in this subject is the existence, for given p > 2, of 

A(p)-sets which are not A(q) for any q > p. (The case p < 2 is settled by a 
result stating that for any S c Z, { p E ] 1, 2[ ] S is A, } is an open interval, see 

[B-E]). 
When p is an even integer > 2, the problem may be solved by explicit 
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constructions. (The case p = 4 goes back to Rudin 's  paper [R].) Recently the 
author obtained a probabilistic technique to generate such sets, for any real 
number  p > 2 (see [B~]). The existence proof  is based on statistical verification 
among subsets of { 1, 2 . . . . .  N} of a given size. The case p - 2 is open so far 
and cannot be solved by a purely probabilistic extraction argument, in view of 

the results of [B~]. 
The search for explicit examples gives the A( p)-set problematic a combina- 

torial and number  theoretic flavor. For instance, an easy condition to ensure 
that S is a A(4)-set is the following: 

(1.2) m~, m2, n~, n2~S and mt + m2 = nl + n2 ~ {m~, m2} = {nl, n2}. 

(1.2) permits one indeed to construct A(4)-sets which are not A(q) for any 

q > 4 .  
Some attention was paid to the sequence of squares {n2}. In [R], it was 

observed that (n 2} is not a A(4)-set. The problem whether {n:} is A(p)  for 
p < 4, in particular a A(2)-set, is still open. Let us at this point make a 

computat ion of the 4th moment  of a polynomial 

N 

(1.3) f =  ~ anein2t; 

clearly 

II f l12 = E a,,,a.e i~m2-"2)t 
l<_m,n<_N 2 

am Cln 
(1.4) = E E • 2 

I k l < N  z (m-n)(m+n)~k 
l<_m,n<.N 

The number  of terms in the inner sum corresponds to the number  of  divisors 
of k in the interval IN - ~ - k, v/-k[ and hence is bounded by the number  

d(k) of divisors of k. 
Invoking the Cauchy-Schwarz inequality, it follows that 

(1.5) Ilfll,4= <_ ~ d(k) ~ lamlZla, l 2, 
Jk l<N 2 m2-n2-k 

l'<m,n<_N 

thus 

(1.6) [1 f JJ4 =< e~l°gNa°'l°gN la.I 2 
I 

On the other hand, if we let a, = 1 (1 < n < N) in (1.3), (1.4) yields that 
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II f II 2 Y~ ( # { N / 3 < q < N / 2 1 q l k } )  2 
N2/4 < k < N213 

(1.7) "~ ~,  N 2 (q' q') (q, q') = greatest common divisor 
N/3<q,q'<N/2 q .  q t  

~, N: log N. 

Hence {n 2} is not a A(4)-set. 
In this paper, we will only be concerned with the A( p)-property forp > 2. If 

p > 2, condition (l. 1) is equivalent to an inequality 

(1.8) 2 < C  2 ]a,I 2 
nES 

for all coefficient sequences supported by S. Denote Kp(S) the smallest 
constant C satisfying (1.8), i.e. the norm of the identity operator L 2 --- L~. 

Rephrasing (1.6), (1.7), we get thus 

log N ] 
(1.9) c(logN)~/4<K4({n2l l <=n =<N})<exp( ¢ 

log logN/" 

Refining these estimates is an interesting question which, however, will not 
be pursued here. The upper estimate in (1.9) is used later in proving 

PrtOPOSmON 1.10. For p > 4, one has 

(1.11) Kp({n 2 [ n <U})  ~ N 1/2-2/p. 

Observe that Kp(S) >-_ CN I/2-2'p whenever S c { 1, 2, 3 , . . . ,  N2}, I S I > N. 
Indeed 

Kp(S)vISIV/2~ ~ eint °>_~ ~l ~s eint ° 
nES P tl <I/ION2 n 

(1.12) > CN_2ISIP. 

Thus the bound (1.11) is the best one may achieve taking into account the 
density of the set. 

The computation (1.12) also shows that if S c { 1 , . . . ,  N} has a bounded 
A( p )- constant, then I SI < CN ~p. In [BI] it was shown that in fact the generic 
subset of {1 . . . . .  N} of size ---N 2'p has bounded A(p)-constant, for all 
2 < p < ~ .  

DEFINmON. A A( p )- subset S of Z has maximal density provided 
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IS n [ - N , N ] I  
(1.13) lim > 0 .  

N = 1 , 2  . . . .  N 2tp 

Observe that then S cannot be a A(q)-set, for any q > p. Rather than 
invoking (1.12), this fact has also a functional analysis explanation. The linear 
space [e it . . . . .  e mr] as subspace of LP(T) is (uniformly) isomorphic to the 

N-dimensional I p space, i.e. l~ (cf. [Zy]) for which the maximal dimension of 
Hilbertian subspaces turns out to be ,-- N 2/p (see [B-D-G-J-N] and [F-L-M] 
for this and related facts in the context of Dvoretzky's theorem). 

Proposition 1.10 is the first step in proving 

THEOREM 1. For all p > 4, there are maximal density A(p)-sets contained 
in the squares. 

This paper is not self-contained. The proof of Theorem I uses the techniques 

of [B~], in fact a variant of this method, and making the paper self-contained 
would require a full repetition of [BI]. 

The reader may also wish to consult [R] for background material on the 
A(p)- set problem. 

Next, we state some analogues to Theorem 1 for other sets. 

THEOEM 2. Foranyintegerk >- 1 andp >- p(k), thereisa maximaldensity 
A(p)-set contained in the set { nk}. 

Thus p(1)=  2, p (2 )=  4. For k > 3 the estimate on p(k) will not be as 
precise, due to problems similar as in the context of the solution to the Waring 
problem by the circle method (see [Vaug]). 

THEOREM 3. There are maximal density A(p)-sets contained in the 
sequence of prime numbers, for any p > 2. 

Observe that the prime numbers themselves do not form a A(2)-set, since it 
may be shown that if S is a A(2)-set then 

(1.14) IS tq [ -  N,N]I < CN p, 

for some constant C and p < 1. 
As above, the letters c, C will be used for various constants. 
Section 2 deals with a probabilistic result, Section 3 with the consequences, 

while the last section contains some estimates on exponential sums. 
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2. A probabilistic result 

In order to follow this section, the reader will have to consult [B~]. Rather 
than restricting to characters on a group, we deal with 1-bounded (in 
L~-norm) orthogonal systems on a probability space. Observe that the notion 
of A(p)-set  may be reformulated for more general function systems ~ =  
(tp~, ~2,. • .) and is of interest in orthogonal system theory, namely in connec- 

tion with Menshov's theorem (see [K-S]). In particular, we introduce the 
following 

DEFINITION. For p > 2 and • an orthogonal system, let Kp(~) be the 
smallest constant C satisfying 

(2.1) < C  • la i l  2 , 

for all finite scalar sequences (a~). 

In the sequel, we will always assume • uniformly bounded by 1.. 
The main result of this section is the following 

PROPOSITION 2.2. Let ~ = (~ ,  . . . , ~n), 2 < q < p < 2r, r > 2, 0 < p < 1. 

There is a subset S c { 1 , . . . ,  n }, I S I .~ n p such that ~ = { ~ [ i E S } fulfils the 

inequality 

(2.3) Kp(~t) <--- CKq(t~)qlPn ll2(p--qlp).~ CKr(d~)r/p. 

Moreover, this property holds statistically, i.e. for most subsets S o f  this size. 

The constant C depends on p, q, r, and p. 

The proof of Proposition 2.2 is a variant of [Bt]. Let us recall some 
terminology from [B~]. 

For 1 < m  < n  

(2.4) T i n =  d=(ai)~<,<,  [all=-- a < l a n d l s u p p d l < m  , 

= n - ~+P and { ~i(w) ] 1 < i < n } are independent 0,1-valued random vari- 
ables of expectation ~ (selectors). 

Denote further 

(2.5) fa.,o = ~,, ~i(o))ai~i, 

(2.6) Kp( ) -- [ 
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where 

(2.7) S,o = (1 < i < n I ~i(o9) = 1} 

is the random set. 
Denoting 0),0)2, 093 independent copies of co, define 

gm,,m,.m,(0),, 0)2, ~03) 
(2.8) 1 

= sup sup sup ~ ~ ~i(0)0l(~ai,J~,o,2(1 + If~,,o,I)P-2)l. 
[A [ _-< ml 6ET= 2 ~ET~3 N / m i iEA 

Denote further qo -- log n. 
Referring to [Bt] (more precisely (3.22), (3.23), (3.24), (3.28) in [Bd) one has 

that 

f Kp(og)'do9 

(2.9) < C f Kp(w)P-'d0) 

+ f { sup  E [sup [I I~m,,m2,rnj(O')l' ~f)2, 0)3)II ~.,aJ} dw2d0)3, 
m3<no d>O 

where the supremum is taken over all m ,  m2 satisfying 

(2.10) no ->- m l =>_ 2am2, m2 >= m3. 

REMARK. It is easily verified that the other expression (3.24) in [BI] 
may be estimated by (3.28) of [Bt], i.e. (2.9). As in [B~] we evaluate 
II [~m,,m,.m,(09" 0)2, 093) II-~ao,~, using lemma 1, lemma 3 of [BI]. These are 

L~MMA 2.11. Let g be a (bounded) subset of  R~, B = sup~esIxl. Let 
0 < J <  1 and ( ~i)~_~ selectors of mean 6. Let 1 < m < n. Then 

(2.12) 

( K = c  +logO/ i} + log  /logU,(8, t)dt, 

where for t > 0, N2(£, t) stand for the metrical entropy numbers of 8, with 
respect to the euclidean distance. 

LEMMA 2.13. Let ¢ ' = ( ~  . . . .  , ~,) be an orthogonal system of functions 
uniformly bounded by 1, m < n and 2 < s < oo. Define 
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(2.14) 

Then 
(2.15) 

(2.16) 

ON A(p)-SUBSETS OF SQUARES 

P,n = { ~ aiq~i [ ci ~-(ai)~Tm} • 

log N~(Pm, t) < Cm[log(l + n/m)]t -~ 

logN~ (Pro, t) < Cm[log(1 + n/m)]log 1- 
t 

f o r / > ½ ,  

f o r 0 < t  <½, 

297 

where C = C~ and v = v(s) > 2. Again N~(P, t) stand for the metrical entropy 

numbers o f  P considered as subset o f  L L 

Estimation of II gm,,..,,.,(0)~, 0)2' 0)3) IIL'~a.~) follows next. 
Freeze the variables 092, 0)3 for the moment and denote 

(2.17) g6 = J~,o~; he = fe,o~,. 

Apply (2.11) where m = m~ and 

(2.18) g =  ((I (~o,, g6(1 + Ihel)p-2)l)f=~ 16ET,,,, e~Tm~}. 

Observe that q0/log( 1/ci) = o (1). Hence (2.12) yields 

(2.19) 
II/~m,~,,~,(0)~, co~, 0)3)II~'~a~,) 

f" _-__ C(c~ + m ~- ~) mB + C(m~ log n ) - m x/log N2(g, t) dt 
,dO 

where B = supxe~lxl is evaluated now. 
L q, Lq'-duality, H61der's inequality, one gets 

(Y~ + Ihel)P-2)12) 1/2 I (~o,, g6(l 

[; 1 'q (2.20) < Kq(~) 1g61¢(1 + [he[) t'-2)q' 

~gq(~) II ga I1~ II 1 + Ihel I1#'~'-'(1 + II he I1~) ~'~-~. 

Remembering (2.17) 

(2.21) B < Kq(~)Kp(oh)Kp(0)3)P/q'-Im~/2(p/q- ') 

On the other hand, using the L r, Lr'-duality, also 

( [r Y~ I(~0~,ga(l + Ihel)'-z)12)~'2<gr(O) Ig6l"(1 + Ihel) (' 2)r , 

(2.22) B < K,(~)Kp(0)2)Kp(co3)Pm-tm]/2tp/'- t) 

Linearizing and invoking the 
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We now estimate the euclidean distance between elements of 8. Again using 
L r, Lr'-duality 

I(I (q~,,gb(1 + Ihcl)P-2)l)--(l(q~i, gb,(1 + Ih~,l) ' -2)l) l  

<(Y~ I (~,,gb(1 + Ihcl)V-2-gb,(1 + Ihc, I)p-2)12) m (2.23) 

__< K,(~)II gb(1 + Ih~ I)P-2-gb,(1 + Ih~,l) "-2 II,'. 

By the scalar inequality 

Ix(1 + l y l ) p - 2 - x ' ( 1  + ly'l)'-21 
(2.24) 

5 Ix-x ' l (1  + [yl)"-2+ Clx'l(1 + lyl)+ ly'l)~-3~+ly-y'l, 

where ( p - 3) + -- max( p - 3, 0). One gets by H61der's inequality 

(2.25) Kr(t~)-] "(2.23) 

-<- II go - go, II., II ] + l h~ I llg -~ 

+ c llg~,ll~ l l l +  lhcl + lh~,l II~ "-3)* I I h . -  hc, II,~, (2.26) 

where 

r '  ( p - 2 ) r '  r '  r ' ( p - 3 )  ÷ r ' 
(2.27) + =1 ,  - - +  + - - - - 1 .  

Pl P P P P2 

Observe at this point that the existence of finite Pl, P2 fulfilling (2.27) is 
implied by the hypothesis p < 2r. 

Again by (2.17) 

(2.28) (2.25) _-< Kp(w3) p-2 II go - go. lie,, 

(2.29) (2.26) ___< CK,(o~2)K,(o~3) ~.-3~* II hc - he. I1~. 

By (2.23), it follows thus that for g defined by (2.18) 

l°g N2 ( g, K ~ ) )  < log Np,(Pm,, CtKp(t°3)-P+ 2) 

(2.30) 
+ log N~(Pm,, ctKp(to2) -'Kp(oh) -(o-3)+). 

Substituting the bounds (2.21), (2.22) on B and the entropy estimate (2.30), it 
follows that 
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(2.19) =< CS'nKT(~)Kp(to2)Kp(093)P/q'- 'm]/2tp~q- ') 

+ CmF l/2K(~)G(ro2)G(t03) J'/r'-lm]/2(':'/'- l) 

(2.31) + C(mtlogn)_,aKr(.)Ku(co3),_2(fo*x/logNp,(pm,,t)dt)  

From (2.15), (2.16) in Lemma 2.13, one gets for s < oo 

fo ,/ (2.32) log N~(Pm, t)dt ~ Cx//--m log n. 

We substitute (2.32) in (2.31) and obtain an estimate on 

Ii gm,r,2.=,(CO" C02, CO3)IIL'~ao,~ 

CKq(t~)Kr( tD2)gp( t.o3)t,/q,- i mlr,(p,q-1) 

(2.33) 
+ CKr(~)K,,(o)gKAo)3) P"- ~m~ ~m] ~2(~''- ~ 

+CK,(@)Kp(co3)p-2(m211'2 r l c t ~ w c t w c ' t ~  (m3) la " - -  + _ _ , , = , . . ~ , c o 2 , . . ~ , c o 3 ,  ~"-3)+ - -  
\m~l \mr~ 

Going back to (2.9) and taking for fixed d the corresponding supremum 
yields the expression 

CKq(dP)Ku( to2)Ku( co3) P/¢- ' ( ~ )  'Z2 m]/2(u/q- ') 

(2.34) + CKr( O )Kp( co2)Kp( co3) P"- 12 -dnm~ar- l 

+ C2 -d/2K,(~)[Kp(to3) p- 2 + Kp (co2)Kp(co3){,- 3)÷1. 

Summation over d = 0, 1, 2 , . . .  and taking supremum over m3 < no yields 
therefore after integration in co2, o93 
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f Kp(o~) pdo~ 

[fK.( ' p - ' v p  
< ¢.o)P 

(2.35) 
-l"¢/no\'/2supIm~/2,p/q-t, l o g ~ ]  "If- CKq({~)If KP(°J)Pd("°J I'-n) ml<no L 

[. /.~ "]((p- 3)+ + I)/p 
• -I-CKr(t]~ ) .,~Kp(c.o)Pdco]I/r'+cKr(~P)13Kp(co)Pdo.)J . 

Since 2r > p > q, it follows easily from (2.35) that 

(2.36) f Kp(o))do) ~ CKq(c~)q/Pn i/2(p ~ q ~ p ~  + CKr(CYP) rip. 

Since K,(co) is the average Kp-bound for subsystems q~l ofq~ of size dn = n", 
Proposition 2.2 is proved. 

REMARK. The reader will find the proof  of Lemmas 2.11, 2.13 in [B~]. We 
also refer to [B-L-M] for results related to l_emma 2.13. 

3. Consequences 

In this section, we draw some consequences of  Proposition 2.2. Some of 
them require an iteration of (2.3). We did state (2.3) for generic subsets of the 
corresponding size on purpose, since sometimes one needs the set to satisfy 
(2.3) for various parameter choices of p,  q, r. 

Letting q < p < 2q and p = q/p in (2.3), it follows that 

(3.1) Kp(dpt)<-CKq(tY~)q/P for IO~l " - I ~ l  q/p. 

More generally, if q < p < ~ ,  consider a chain 

q = po < Pl < P2 < . . .  < p j=  p 

satisfying Pi < 2p~_ 1. 
From (3.1) and iteration, a sequence 

is obtained, where 

(3.2) 

(3.3) 

( ~ ) ~ ( I ) l  D ( I ~ 2 ~  . . .  ~ ¢ ~ j ~ ' I  J 

I~1  "~ I ~ - , I  p'-'~p', 

Kp,(~i) < CKp,_,(~i- l) p'-'/p'. 
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Hence 

(3.4) I~l  " I~l  q/p, 

(3.5) Kp(h °)  < CKq(O) q'" • 

For q = 2, Kq(~) = 1 (~  is a 1-bounded ONS). Hence, for all p > 2, there is a 
subset • of ~ ,  I q~l "~ I ~ 12'p with bounded Kp constant. This is the main result 
of [BI]. We need the following generalization: 

THEOREM 4. Let  2 < q < p < o~ and • be a finite uniformly bounded 

ONS. Then there exist • c ~ satisfying 

(3.6) Kp(hu)< C and I~ l  "~ gq(t~)-2q/Plt~l q/p. 

We did state this result as a theorem, since we believe it is of  interest to 

orthogonal system theory, besides the applications in this paper. 
Observe that by (3.4), (3.5) it suffices to prove the statement when q < p < 

4~q. I f p  < 4, one may apply (2.3) with r = 2 and obtain the desired result. If  
p > 4, a problem appears when estimating K,(~) for a suitable value of r and 

we use again an iteration procedure. 

PROOF OF 3.6. Choose p/2 < r < ~4q and consider a sequence 

(3.7) 2 = r o < r l < . . . < r j = r ,  r~<~ri_~, r i_~<q/2  ( i < j ) .  

Consider also a sequence 

(3.8) q = po < p1< . . . < pj < p < ~q, p~ < p~_lrJr~_~. 

Take t, satisfying 

(3.9) p~/2 < t~ < ~ pi - rJ4, 

(3.10) 0 < 0 ; < 1  satisfying 1 0"+ 
t~ q 

Observe that by (3.7), (3.8), r~-I < t~ < q. 

Define 

1-o, 

ri-i 

Pi-1 
(3.11) r: = r~ - - ,  

Pi 

(3.12) 0 < zi < 1 satisfying -1 =-zi _ ~ . ~ 1  - z i  

r~ q ri-l  
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Observe again that r~ _ 1 < r~ < q.  

Apply (2.3) with 2 < p~_, < p~ < 2t~, 0 <Pi < 1, to the system q);_,. Hence 
most q~ c q~_ 1 of size 

(3.13) t~il = Iq~i-ll p' 

satisfy 

(3.14) Kp,(~i) < CKp,_,(cYPi-I) p'-'/p' ICTPi 11/21q~i-t I -p'-/2~' + CKt,(cYPi-l) t'/p'. 

Since 2 < r; < r~ < 2rz_ 1, also 

(3.15) K,,(~) <= CKr;(C~i_l) r;/r, I(~i [t/2l(I)i_l I -r;/2r, -I- CKr,_,(¢~.)i_l) ~-,/~. 

Imposing the condition 

(3.16) Kr,(~) < C 

leads by (3.15) to the condition (on p~) 

(3.17) I~1 "~ I(1)i-I Ir;lr'gr;((~i-l) -2r;lr'. 

We also want the first term in (3.14) to dominate the second, i.e., by (3.17), 

(3.11) 

(3.18) Kr~(CYPi-1) p'-'Kt,(cypi - 1)" =<- Kp,_,(dP i_ 1) p'-'. 

By (3.12), (3.16) and interpolation 

(3.19) Kr.,(~P,_ ,) < CKq(*,_ ,)~,. 

Similarly, by (3.10), (3.16) 

(3.20) K~,(~_ 1) < CKq(~_ 1) °,. 

Thus (3.18) will be fulfilled if 

(3.21) "ciPi-I "-1- Oiti ~ Pi-l" 

Substitution of (3.11), (3.12), (3.10) in the left member of (3.21) permits one 
to derive the inequality from (3.7), (3.8), (3.9). 

Since the first member in (3.14) dominates the second, one has 

(3.22) gp,(~i)P,]~i_l lpH/2<=Cgp,_, (~i_l )P,- , l~ i[  t~,/2 (1 < i  < j )  

from where clearly 

(3.23) Kpj ( dpj ) P, I cIP I q/2 ~ CKct(cYP ) q I %  I p/2. 
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also, by (3.16) 

(3.24) Kr(Oj) < C. 

Apply now once more (2.3) with pj < p < 2r, 0 < p  < 1 to get 

W C ~ j ,  IWI = ]~jl p 

such that, by (3.23), 

(3.25) Kp (u?) <_ CKp,(dpj) ~',/P l ~ll'/Zl % I- ~,/zp. 

Choosing p to achieve boundedness, one gets 

(3.26) I WI "~ Kp,(cD:) -z,,/, I~j l'/'. 

Hence (3.6) holds, by (3.23), (3.26). This completes the proof of Theorem 4. • 

To establish Theorems l, 2, and 3, the following consequence of Theorem 4 
is used: 

COROLLARY 5. Let S be a subset of  { 1 . . . .  , N}, 2 < q < oo, t SI > N 2/q. 
Assume Kq(S) "minimal", i.e. 

(3.27) Kq(S) < C IS [UZN-~:q. 

Then, for q < p, there is a subset So of  s satisfying 

(3.28) [Sol ~ N z'p and Kp(So) < C. 

PROOF. Immediate from Theorem 4. • 

In the case of the squares {nZl l =< n =<x/~}, the minimality of the 
Aq-constant is shown for all q > 4. This is done in Section 4 of this paper. 

For each power k, one may prove minimality of the Aq-constant of 
{ nk I l ~ n <-_ N Ilk } for sufficiently large q. 

For the prime numbers { p I 1 _--< p _-< N}, this minimality property holds for 
all q > 2. 

The statements in Theorems l, 2, and 3 then follow immediately from 
Corollary 5, at least the local version. Passing from the local to the sequence 
version is done similarly as in [B d, using for instance Littlewood-Paley theory 
(see the introduction of [BI]). 
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4. Some estimates on exponential sums 

In view of the discussion at the end of the previous section, Theorem 1 will 
follow from the inequality 

(4.1) Kp({n 2 [ 1 < n < N}) < CpN I/2-2/p, 

forp > 4 .  
Clearly (4.1) follows from a distributional inequality, 

N 
lanl2_- < 1, 

1 

(4.2) 

for 0 < ~ < 1 and where C, may be taken arbitrarily small. 
Denoting by a(N) functions of N growing slower than any power of N, it 

follows from (1.9) that 

{ I  ~ane2ni"2' } (4.3) mes t ~T  > fiN ~/2 < a(N)r~-4N-: 
1 

Thus (4.3) implies (4.2), except for large J, i.e. ~ > l/a(N). 
To take care of such J, we use the explicit description of the exponential sum 

N 
( 4 . 4 )  f ( t )  --~ ~ e 2nin't 

l 

on major arcs. Thus letting v -- 100 -I, define for 1 _-< a < q _-< At', (a, q) -- 1 

(4.5) ~ # ( q , a ) =  {t~[0,  l ] [ I t - a / q l  <NV-2}, 

identifying T and the interval [0, 1 ]. 
These neighbourhoods d/(q,  a) will be referred to as major arcs. There is 

v~ > 0 such that 

(4.6) If(t)l < CN ~-~', 

if t does not belong to a major arc; 

(4.7) f ( t ) = l  s (q ,a ) v ( t -a /q )+O(N  ~'2) i f tE~(q ,a ) ,  
q 

where 
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q 
(4.8) S(q ,  a)  = ~ e 2nir2a/q. 

1 

5o l (4.9) v(fl) = N e2"iu~PU2du. 

The reader will find details on these matters in [Vaug] for instance. For our 
purpose here, only the estimate 

(4.10) If(t)l <--Cq-~ /2 ( I t -a /q l  + N - 2 )  -1/2 f o r t ~ J C ( q , a )  

will be relevant. 
The only difficulty in deriving (4.2) from (4.6), (4.10) is to pass from (4.4), 

i.e. coefficients 1, to a general coefficiental sequence a = (a,)l_~,_<u, l al  = 1. 
we assume 6 > 1/a(N). 

Let t~ , . . . ,  tR be 1/N2-separated points in [0, 1] satisfying 

(4.11) ~lane2nin2t, >t~N 1/2 (1 < r < R ) .  

Our purpose is to estimate R. By linearization, (4.11) yields 

(4.12) Y~ ~, exp[2~zin2(tr - tr,)] > t~2NR 2. 
l < - _ r , r ' ~ R  1 

Letting Y > 2 be fixed, (4.12) and H61der's inequality imply 

(4.13) Y, If(tr -- t,,)l z > t~2~NrR 2. 
l < r , r ' < _ R  

Consider the function 

(4.14) 

satisfying 

(4.15a) 

Define 
(4.15b) G ( t ) =  Y. 

q_-<Q 
O ~ a < q  

Thus (4.13) implies 

(4.16) 

F(O) = (N2/sin O I + 1)-z/2 

II F I1,-  1/N 2. 

q-Y12F(t - a/q)  where Q ,--, ~-  5. 

Y, G(t, - t, ,)>82YR 2. 
< r  r ' <  1=, =R 
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Let 0 < 17 = C be a funct ion on T verifying the condi t ions  

(4.17) supp 0 c [ - N 2, N2], 

(4.18) II a II, < CR/N2, 

(4.19) 17 > 1 on a 1/N2-neighbourhood of{t l ,  . . . ,  tR}. 

Denote  a~C the indicator  funct ion of  a 1/10N2-neighbourhood of  OCT. By 

the separat ion-hypothesis  of  the points  tr and  (4.19) 

R 

(4.20) a >_- Y, ,~('(t - tr). 
1 

Define al by 171(0) = 17( - 0). Thus,  f rom (4.20) 

(4.21) (17 * 171)(t) > C ~ N-2:,~(t - -  ( t r  - -  tr,)). 
l <-_r,r'~R 

Since F(O) ,-,F(O') for ]0 - 0'] < 1/N 2, it follows f rom (4.16), (4.21) that  

(4.22) (G, 17 * 171) ~ CN-4 t~2~ 'R2 .  

Expressing the left m e m b e r  of  (4.22) in Fourier  coefficients, one gets 

(4.23) Y, I#(k)121G(k)l >_- CN-4t~2rR 2, 
Ikl --<N 2 

and we est imate the left member .  
It follows from (4.15b) that  

(4.24) G(k) = Y, ql-y/EF(k). 
q<-Q 
qlk 

Hence, by (4.15a) 

(4.25) I (~(k)l < CN-2d(k; O), 

where d(k; Q) stands for the n u m b e r  of  divisors of  k less than Q. 
Fix z > 0. Est imate by (4.18), (4.25) and the const ruct ion of  17 

Y~ IO(k)lZlG(k)l 
Ikl --<N 2 

(4.26) < CN -2 ~, d(k; Q)lO(k)l 2 
lk~ <=N z 

< CN-40~R + CQREN-61 {0 < k < N21 d(k; Q) > Q~}I. 
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Thus 

(4.27) CQ~+CQRN-21{O<k<=NEId(k;Q)>O~}I >C~2rR. 

LEMMA 4.28. I{O<k<NId(k;Q)>Q~}I<C~,~Q-BN whenever 0 <  
z <B<oo. 

Once the lemma is proved, (4.27) yields R < C~ -:y-5~ < c~ -4- ' ,  since ~, > 2, 
r > 0 are arbitrary. This is the desired inequality (4.2). 

PROOF OF LEMMA 4.28. For 2 < q < Q define the function ~/q on [0, N], 
putting 

q~q(k) = 1 i fq  [ k, 

(4.29) = 0 otherwise. 

Fixing any integer B > 1, write 

(4.30) I{O<=k<NId(k;Q)>Q~}I <Q-~n~ ~ q ( k )  . 
2<= Q 

Denote [q,, q2,. • •, qn] the smallest common multiple. Then, expanding the 
power, since N is sufficiently large 

q~Q 

(4.31) "~ Y, [ql, q2, • • •, qB]-' 
qbq2,...,qm <= Q 

< y, ld(q),<exp(CB 2 l o g 0  / .  
2<=q<=o" q log log Q/ 

Substituting (4.31) in (4.30), one has 

(4.32) 1 I{0 < k  < N  I d(k; O ) > O ~ } l  < O -~n/2, 
N 

for Q large enough. Since B was chosen arbitrarily this proves the lemma. • 

The proof of Theorem 1 is now complete. 

We indicate the modifications of previous argument in order to obtain 
Theorems 2 and 3. 

Fixing a power k, it has to be shown that 
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(4.33) Kp({ nk I 1 _- < n = < N}) = < C N  l/2-k/p, 

for sufficiently large p, dependent on k. We first show how to substitute (1.9) in 
order to restrict ourselves to large values of~. Let t / =  (a.)~ ~. <N, It/I = 1 and 
denote 

(4.34) 

Write 

(4.35) 

provided 

(4.36) 

N 
qJ(t) = Y, a . e  i"'. 

1 

y I ~a(t)IPdt ~ ((~oNI/2) v-2 < N m - k ,  
{1~1 <6~0 Nl/z} 

80 < N (1 -~vtP-2). 

Letting p --* oc, one may thus restrict to values ~ > N-*,  with z arbitrary small, 
in proving a distributional inequality 

(4.37) mes{t ~ T  I I ~o(t) I > ~N I/2} < C~ -p+~m-k, 

that will imply (4.33). Letting now 

N 
( 4 . 3 8 )  f(t) = ~ e 2ninkt, 

1 

the relevant behaviour of f is taken care of by H. Weyl's inequality and the 
description of f on major arcs (cf. [Vaug]). The rest of the above argument 
remains analogous. Here the exponent ? has to be taken sufficiently large, again 
depending on k. The details are very much routine and we leave them to the 
reader. 

In Theorem 3, the prime numbers { 1 < p < N I p prime} are considered. 
We claim that for r > 2, one has 

(4.39) K,({ 1 < primes < N}) < CrN~aN - '/', 

letting N~ = N/log N, i.e. the size of the set under consideration. 
For ~o(t) = Z~ ape 2~p', Y lap 12 -5 1, write 

(4.40) f{t,I <~'~} I ~(t)I~dt < (8oN~a) "-2 < N[12N - l, 
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provided 

(4.41) 60 < C(log N) - 1/(~-2) 

Thus the distributional inequality (for any e > 0) 

(4.42) mes{t E T  I I ~(t)l > 3N~/2} < C,(~-2- 'N -~ 

only needs to be verified for ~ > (log N) - c 
The exponential sums with prime frequences are 

N 
(4.43) f ( t )  = ~ log pe 2~im. 

1 

They are introduced by writing 

~(/r) = ~ ap lx/~pe2mpt r 
, 

(4.44) N 
= y. ap x / ~  P e:"iPt" + O(N~'2), 

N 1~2 

and linearizing to get (4.12) above. Thus 

1 N ''2 tr,)] (4.45) logN l=<r~.r<R, '= ~ logpexp[2rc ip( t r -  > C t ~ 2 N I R  2. 

Hence 

(4.46) 

or, fixing some ), > 1, 

(4.47) 

if(t ,  - tr,)l > CJ2NR 2 
l<ffir, r'<_R 

Y, I f(tr - tr,)I v > CJZrNrR 2. 
l <ffir, r'<__R 

The relevant behaviour of f is described in terms of major arcs 

(4.48) J//(q, a) = {t E T I It - a/q I < PN-1} ,  

309 

for 1 < a _< q < P, (a, q) = 1. Here P stands for a sufficiently large power of 
log N. The non-negligible contribution t o fwhen  majorizing the left member  of 
(4.47) come from these major arcs. Further, for t ~ t / ( q ,  a) 
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u(q) 
(4.49) f ( t )  = - -  

~o(q) 
v(t - a /q)  + O(Ne-C  ~°~), 

where/ t  is the Moebius function, (a the number  of Dirichlet characters to the 
modulus q and 

N 

v(fl) = Y~ e 2"i"a 
1 

(see [Vaug], section 3, for details). 

We denote 

(4.50) F ( O ) = ( N l s i n  0l + 1)-r, 

(4.51) G ( t ) =  ~ ~o(q) -rF( t -a /q) .  
q<Q 

O<a<q 

Then II F II, 1/N and (4.47) implies 

G(tr - -  tr, ) > CO2rR 2. 
< r  "<  Iffi , r  = R  

Using the fact that ~o(q) > C~q ~-~ for any z > O, one proceeds as in the case of 

the squares, discussed above, to bound 

(4.52) G(tr - tr,) < CeR l+* 
1 <=r,r'£R 

Hence R < Ce(~ - 2 - e  and (4.42). 

REMARKS. ( 1 )  There is an obvious extension of Theorem 2 to polynomial 
sequences (W(n) ln  = 1, 2 . . . .  } where W(x) is a given polynomial (with 
integer coefficients), using the same methods as above. 

(2) We only discussed Ap-sets in the context of subsets of Z, i.e. characters 

on T. Considering lattice points on the sphere, 

( m , , m 2 , . . . , m d ) E Z  a Y.m 2 = N  2 , 
1 

for large dimension d>_-5, one may get Ap-subsets in {1,2 . . . .  , N }  d of 
maximal size, i.e. N 2d/p, for suitable p > p(d).  One has in particular that 
p ( d ) - - 2  for d - - o o .  Lattice point sets on spheres have sometimes been 
considered in the context of this problem. 
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